Idit Amar-Yuli, Wachtel, Ellen , Ben hoshan, Einav , Danino, Dganit , Aserin, Abraham , and Garti, Nissim. . 2007. “Hexosome And Hexagonal Phases Mediated By Hydration And Polymeric Stabilizer.”. Langmuir, 23, 7, Pp. 3637–3645. doi:10.1021/la062851b.
In this research, we studied the factors that control formation of GMO/tricaprylin/water hexosomes and affect their inner structure. As a stabilizer of the soft particles dispersed in the aq. phase, we used the hydrophilic nonionic triblock polymer Pluronic 127. We demonstrate how properties of the hexosomes, such as size, structure, and stability, can be tuned by their internal compn., polymer concn., and processing conditions. The morphol. and inner structure of the hexosomes were characterized by small-angle x-ray scattering, cryo-transmission electron microscope, and dynamic light scattering. The phys. stability (to creaming, aggregation, and coalescence) of the hexosomes was further examd. by the LUMiFuge technique. Two competing processes are presumed to take place during the formation of hexosomes: penetration of water from the continuous phase during dispersion, resulting in enhanced hydration of the head groups, and incorporation of the polymer chains into the hexosome structure while providing a stabilizing surface coating for the dispersed particles. Hydration is an essential stage in lyotropic liq. crystal (LLC) formation. The polymer, on the other hand, dehydrates the lipid heads, thereby introducing disorder into the LLC and reducing the domain size. Yet, a crit. min. polymer concn. is necessary in order to form stable nanosized hexosomes. These competing effects require the attention of those prepg. hexosomes. The competition between these two processes can be controlled. At relatively high polymer concns. (1-1.6 wt % of the total formulation of the soft particles), the hydration process seems to occur more rapidly than polymer adsorption. As a result, smaller and more stable soft particles with high symmetry were formed. On the other hand, when the polymer concn. is fixed at lower levels (\textless1.0 wt %), the homogenization process encourages only partial polymer adsorption during the dispersion process. This adsorption is insufficient; hence, max. hydration of the surfactant head group is reached prior to obtaining full adsorption, resulting in the formation of less ordered hexosomes of larger size and lower stability. [on SciFinder(R)]