Dima Libster, Ben Ishai, Paul , Aserin, Abraham , Shoham, Gil , and Garti, Nissim. . 2008. “From The Microscopic To The Mesoscopic Properties Of Lyotropic Reverse Hexagonal Liquid Crystals.”. Langmuir, 24, 5, Pp. 2118–2127. doi:10.1021/la702570v.
The authors aimed to explore a correlation between the microstructural properties of the lyotropic reverse hexagonal phase (HII) of the GMO/tricaprylin/phosphatidylcholine/H2O system and its mesoscopic structure. The mesoscopic organization of discontinuous and anisotropic domains was examd., in the native state, using environmental SEM. The topog. of the HII mesophases was imaged directly in their hydrated state, as a function of aq.-phase concn. and compn., when a proline amino acid was solubilized into the systems as a kosmotropic (water-structure maker) guest mol. The domain structures of several dozen micrometers in size, visualized in the environmental SEM, possess fractal characteristics, indicating a discontinuous and disordered alignment of the corresponding internal H2O rods on the mesoscale. On the microstructural level, SAXS measurements revealed that as H2O content (Cw) increases the characteristic lattice parameter of the mesophases increases as well. Using the H2O concn. as the mass measure of the mixts., a scaling relation between the lattice parameter and the concn. was found to obey a power law whereby the derived fractal dimension was the relevant exponent, confirming the causal link between the microscopic and mesoscopic organizations. The topog. of the HII mesophase is affected by the microstructural parameters and the compn. of the samples. Thermal anal. expts. involving these systems further confirmed that the behavior of H2O underpins both microscopical and mesoscopic features of the systems. Both the swelling of the lattice parameter and the mesoscopic domains is correlated to the bulk H2O concn. in the H2O rods. [on SciFinder(R)]