Dima Libster, Abraham Aserin, Doron Yariv, Gil Shoham, and Nissim. Garti. 2009. “Concentration- and temperature-induced effects of incorporated desmopressin on the properties of reverse hexagonal mesophase.” Journal of Physical Chemistry B, 113, 18, Pp. 6336–6346. Abstract
In this paper we report on the solubilization of desmopressin, as a model for peptide drugs, into reverse hexagonal (HII) liq. crystals. Concn.- and temp.-induced interactions of desmopressin, as well as the conformation of the peptide, were studied using small-angle X-ray scattering, ATR-FTIR spectroscopy, SD-NMR, and rheol. measurements. A considerable increase (up to 6 \AA) in the lattice parameter of the mesophases was obtained upon incorporation of the peptide. According to the ATR-FTIR anal., the chaotropic effect of peptide embedment was assigned to its interactions with hydroxyls of monoglyceride in the outer interface region. These interactions had only a minor influence on the conformation of the peptide; weakening or opening the $\gamma$-turns resulted in partial binding of the peptides free carbonyls to monoolein. Temp.-dependent SAXS measurements displayed a chaotropic destabilizing effect of desmopressin on the structure, shifting toward the lower temp. HII-L2 structural transition. Temp. increase resulted in an increase of the domain size in the presence of the peptide, in contrast to the trend obsd. in the empty mesophase. SD-NMR anal. enabled distinguishing between two factors impeding the diffusion of the peptide: the restriction of motion due to the geometrical constrain of diffusion within the water tubes, and the interactions of the guest mol. with monoglyceride. The onset of the crit. behavior at 45 °C was found to be significant, indicating considerable weakening of the monoglyceride and desmopressin interactions and the destabilizing effect of the peptide on the mesophase above this temp. Similar temp.-dependent behavior was revealed by rheol. measurements displaying the same onset of the crit. behavior. It was demonstrated by Franz diffusion cell measurements that hexagonal mesophases can potentially be used as delivery vehicles for sustained delivery of desmopressin. [on SciFinder(R)]
Rachel Lutz, Abraham Aserin, Yariv Portnoy, Moshe Gottlieb, and Nissim. Garti. 2009. “On the confocal images and the rheology of whey protein isolated and modified pectins associated complex.” Colloids and Surfaces, B: Biointerfaces, 69, 1, Pp. 43–50. Abstract
The conditions necessary to form an assocd. complex between whey protein isolate (WPI) and enzymically modified pectin in water, at pH values above the isoelec. point of the protein, have been documented. The existence of the complex is not easily verified and its characterization in soln. is even more complicated, since the structure is an intermediate entity between the non-interacting, incompatible aq. sol. mixt. of the biopolymers, and a strongly interacting coacervated pptg. complex. Evidence for the formation of this assocd. complex is provided from confocal laser scanning microscope images and rheol. behavior of the aq. mixts. The assocd. complex is characterized by small fluorescent "patches" interpreted as small aggregates. The viscosity of this soln. is greater than that of its individual biopolymer constituents, indicating a synergy of attractive interactions that occurs in the soln. While individually, the pectin and the WPI solns. at the studied range of concns. exhibit moderately non-Newtonian behavior, at sp. wt. ratios, mixts. of the two behave either as highly entangled polymeric structures or as weak gels. The values of the storage modulus G' are equal to or greater than those of the loss modulus G''. We conclude that the assocd. complexes are formed at pH 6, and at 4 wt% WPI with a pectin concn. ranging from 0.1 to 0.75 wt%. The influence of the charge distribution (degree of order of the carboxylic groups) of pectin on the assocd. complex was also investigated, and it was found that the more "ordered" pectin (U63) favors the formation of the assocd. sol. complex. [on SciFinder(R)]
N. Garti. 2009. “Controlled Release Technologies for Targeted Nutrition.” In , edited by N. Garti. UK: Woodhead Publishing Ltd.
Rachel Lutz, Abraham Aserin, Louis Wicker, and Nissim. Garti. 2009. “Double emulsions stabilized by a charged complex of modified pectin and whey protein isolate.” Colloids and Surfaces, B: Biointerfaces, 72, 1, Pp. 121–127. Abstract
Double emulsions based on naturally occurring stabilizers for food applications were studied. Two charged biopolymers, whey protein isolate (WPI) and enzymic modified pectins, interacted in aq. soln. to form a charge-charge complex that was utilized as a hydrophilic polymeric steric stabilizer improving the double emulsion stability. The main factors that influence the interaction between protein and pectin were investigated in relation to double emulsion stability: creaming, coalescence, and water transport between aq. phases. The pH detd. the size of the complex formed. Thus at pH 6, where a sol. complex was obtained between some mol. pos. charged patches on the protein and neg. charged fractions of the hydrocolloids, the double emulsion was the most stable. With the smallest droplet size (∼15 $μ$m), the lowest creaming, highest yield, and minimized water transport were obtained. The best concn. and ratio to form the sol. complex are 4% WPI and 0.5% pectin (for 30% of the W/O inner phase). The influence of the charge distribution (degree of order of the carboxylic groups) of the pectin on the assocd. complex was also investigated, and it was found that the more "ordered" pectin (U63) formed the most stable double emulsion against water transport. [on SciFinder(R)]
Anna Kogan, Deborah E Shalev, Uri Raviv, Abraham Aserin, and Nissim. Garti. 2009. “Formation and Characterization of Ordered Bicontinuous Microemulsions.” Journal of Physical Chemistry B, 113, 31, Pp. 10669–10678. Abstract
Ordered bicontinuous microstructures formed in a fully water-dilutable, pseudoternary unique nonionic microemulsion were obtained and characterized. The conc. contained a mixt. of triacetin/D-$\alpha$-tocopherol acetate/ethanol/Tween 60. Upon diln., the conc. was transformed from a reversed micellar system to oil-in-water microemulsion droplets. The transformation occurred through an intermediate phase of ordered bicontinuous structures. The factors that governed the construction of this unique phase, and its phys. and structural properties, were characterized in detail. The techniques used included small angle X-ray scattering (SAXS), self-diffusion and quantum filtered NMR, differential scanning calorimetry, rheol. measurements, elec. cond., and dynamic light scattering. This mesophase displays microemulsion properties along with some characteristics of lyotropic liq. crystals (but is not a mixt. of the two). Similar to microemulsions, the structures were transparent and spontaneously formed and exhibited thermodn. stability. Yet, unlike microemulsions, they showed short-range order at room temp. Addnl., the microstructures exhibited non-Newtonian flow behavior, characteristic of lamellar structures. The bicontinuous ordered microemulsions were obtained upon heating (to 25 °C) from the lamellar phase existing at low temps. (5 °C). The main feature governing the bicontinuous mesophase formation was the amphiphilic nature of oil blends composed of D-$\alpha$-tocopherol acetate and triacetin. The oils functioned as cosurfactants, altering the packing parameter of the surfactant and leading to the construction of bicontinuous structures with short-range order. These unique structures might have drug or nutraceutical delivery advantages. [on SciFinder(R)]
Paul Ben Ishai, Dima Libster, Abraham Aserin, Nissim Garti, Yuri. Feldman, Paul Ben Ishai, Dima Libster, Abraham Aserin, Nissim Garti, and Yuri. Feldman. 2009. “Molecular Interactions in Lyotropic Reverse Hexagonal Liquid Crystals: A Dielectric Spectroscopy Study.” Journal of Physical Chemistry B, 113, 38, Pp. 12639–12647. Abstract
A dielectric study of reverse hexagonal mesophases (H(II)) is presented. Conducted in the frequency range 0.01-1 MHz and temperature range 293 \textless T \textless 319 K, the study reveals complex molecular behavior in and around the interfaces of the mesoscopic structures of the gel. There exist three clearly defined dielectric relaxations related to separate moieties in the interface, as well as a temperature-activated dc conductivity. A critical temperature, T(0) = 307 K, is noted in the results and related to the dehydration of the glycerol monooleate (GMO) head groups. Effectively, this represents a break-down of the interfacial layer of water. The consequences of this act are clearly visible in the change in behavior of the fitting parameters for all processes. A physical picture emerges whereby at T(0) = 307 K, the ``loosening\''\ of the GMO heads accentuates the dangling motion of the phosphatidylcholine (PC) tails, evidenced by counterion motion along the PC head. Furthermore, it precipitates the percolation of the large TAG molecules that are intercalated in the GMO and PC tails.
Dima Libster, Paul Ben Ishai, Abraham Aserin, Gil Shoham, and Nissim. Garti. 2009. “Molecular interactions in reverse hexagonal mesophase in the presence of cyclosporin A.” International Journal of Pharmaceutics, 367, 1-2, Pp. 115–126. Abstract
The present work investigates the detailed mol. structure of the HII mesophase of glycerol monooleate (GMO) /tricaprylin/phosphatidylcholine/water system in the presence of hydrophobic model peptide cyclosporin A (CSA) via ATR-FTIR anal. The conformation of the peptide in the hexagonal mesophase, as well as its location and specific interactions with the components of the carrier, were studied. Incorporation of phosphatidylcholine to the ternary GMO/tricaprylin/water system caused competition for water binding between the hydroxyl groups of GMO and the phosphate groups of the phosphatidylcholine (PC) leading to dehydration of the GMO hydroxyls in favor of phospholipid hydration. Anal. of CSA solubilization effect on the HII mesophase revealed a significant increase in the strength of hydrogen bonding with surfactant hydrogen-bonded carbonyls, indicating interaction of the peptide with the C=O groups of the surfactants. The peptide probably caused partial replacement of the intramol. hydrogen bonds of the mesophase carbonyl groups with intermol. hydrogen bonds of these carbonyl groups with the peptide. Furthermore, anal. of the Amide I' peak in the FTIR spectra of the peptide demonstrated that two pairs of its internal hydrogen bonds are disrupted when it is incorporated. The partial disruption of the internal hydrogen bonds seems to cause an outward rotation of the peptide amide groups involved, resulting in more efficient intermol. hydrogen-bonding ability. Apparently, this conformational change increased the hydrophilic properties of CSA, even making it susceptible to a weak interaction with the GMO hydroxyl groups in the interfacial region. [on SciFinder(R)]
Orit Amsalem, Idit Yuli-Amar, Abraham Aserin, and Nissim. Garti. 2009. “Phospholipids embedded fully dilutable liquid nanostructures. Part 1: Compositions and solubilization capacity.” Colloids and Surfaces, B: Biointerfaces, 73, 1, Pp. 15–22. Abstract
The use of phospholipids (PL) as surfactants in micellar systems and microemulsions offers many advantages as drug delivery vehicles. PL are commonly used in combination with other non-food surfactants with cosolvents and cosurfactants to form a cascade of delivery structures. The authors incorporated phosphatidylcholine (PC) in a unique U-type water-dilutable phase diagrams exhibiting large isotropic regions of nanostructures. The nanometric liq. structures were prepd. from food-grade emulsifiers. The authors formed water-free concs. with PC that are fully dild. with water to form a variety of unusually structured nanodroplets. Due to the uniqueness of their compn., the designed concs. derived from the nature of the oil phase, type of surfactants, and cosurfactants were characterized and found to be direct micelles (rather than inverse micelles), with the surfactant headgroups convexed toward the hydrophilic phase away from the micelle's core, even in the absence of water. The concs. tend to self-assemble upon adding water to form O/W microemulsions even with small amts. of water (water-poor compns. of 0-20% water). Upon further diln. with water the swollen micelles retain the oil as the inner phase. Multi-component compns. with two types of hydrophilic surfactants were investigated. The most significant enhancement in the total isotropic region was obtained by decreasing the triacetin and PC content in the system. The authors explored, by varying the nature of the headgroups and the nature and length of the lipidic (lipophilic) tails of the PL, the diln. capabilities of each of the systems. [on SciFinder(R)]
Nissim. Garti. 2009. “Preface.” Journal of Thermal Analysis and Calorimetry, 14, 1, Pp. 1–2.
Rachel Lutz, Abraham Aserin, Louise Wicker, and Nissim. Garti. 2009. “Release of electrolytes from W/O/W double emulsions stabilized by a soluble complex of modified pectin and whey protein isolate.” Colloids and Surfaces, B: Biointerfaces, 74, 1, Pp. 178–185. Abstract
W/O/W double emulsions (DEs) stabilized by charged sol. complexes of whey protein isolate (WPI) and modified pectins were investigated in relation to their stability and the release of two types of electrolytes, NaCl and sodium ascorbate. WPI alone cannot properly stabilize the DEs. The droplet size is relatively large (100 $μ$m) and increases with time. However, addn. of modified pectin to form a sol. complex with WPI significantly improved the stability. DEs prepd. with two types of oils (medium chain triglycerides (MCT) and R(+)-limonene) were studied by measuring droplet size, creaming, viscosity, and electrolyte release. Irresp. of their very different oil phase nature, both emulsions were stable against coalescence, but R(+)-limonene formed smaller droplets (25 $μ$m) than MCT (35 $μ$m). The electrolyte release rate was significantly higher from the R(+)-limonene that formed DEs with much lower viscosity. R(+)-limonene-DE released 75% of the NaCl after 28 days, while MCT-DE released only 50%. NaCl was released more slowly than sodium ascorbate. Apparently, the release mechanism from R(+)-limonene-DE was found to be "thinning the outer interface and release of the entire inner droplets" while it seems that the release from MCT-DE was slower and "diffusion controlled". DEs stabilized by WPI/C63 released 12% of the sodium ascorbate after 1 day in milk and remained stable for at least 8 days. However, DEs stabilized with only WPI released about 50% of the sodium ascorbate after 1 day, and phase sepd. after 8 days. [on SciFinder(R)]
Dima Libster, Abraham Aserin, Doron Yariv, Gil Shoham, and Nissim. Garti. 2009. “Soft matter dispersions with ordered inner structures, stabilized by ethoxylated phytosterols.” Colloids and Surfaces, B: Biointerfaces, 74, 1, Pp. 202–215. Abstract
This paper describes the formation and characterization of liq. cryst. dispersions based on the hexagonal phase of GMO/tricaprylin/water. As a stabilizer of the soft particles dispersed in the aq. phase, a non-ionic, non-polymeric surfactant-ethoxylated phytosterol with 30 oxyethylene units (PhEO) was utilized. In contrast to Pluronic copolymers, normally utilized in the stabilization of liq. cryst. dispersions with ordered inner structure, use of such non-polymeric surfactant is not a common practice in this field. The authors revealed how properties of these particles, such as internal structure, size, and stability, can be rationally modified by the concn. of the stabilizing agent and processing conditions. The phys. stability of the hexosomes was further examd. by the LUMiFuge technique. Structural effect of PhEO solubilization on the properties of the bulk HII mesophase system showed that phase behavior was greatly influenced following phase transitions: HII → HII + cubic → cubic + L$\alpha$ → L$\alpha$. The decrease of hydrogen bonding of the hydroxyl and carbonyl groups of monoolein with water and simultaneous hydration of EO groups of PhEO appeared to be important for the obsd. behavior. The use of PhEO as a dispersant resulted in a soft matter multi-phase water dispersion with bimodal distribution of the particle population. Effective stabilization of hexosomes was obtained in an extremely narrow concn. range of PhEO (0.1-0.2%), coexisting with small vesicles and disordered particles. At higher PhEO content, particles had disordered inner structure, and unilamellar and multilamellar vesicles, at the expense of hexosomes in consequence of incorporation of the dispersant into the hexosome structure. PhEO was found to induce lamellar phase formation, introducing disorder into the hexagonal LLC and reducing their domain size. Finally, hexosomes were evaluated as delivery vehicles for the therapeutic peptide desmopressin. Sustained release of this drug was obsd. during the first 10 h; however, permeation drastically increased in the 10-24 h range. [on SciFinder(R)]
Idit Amar-Yuli, Dima Libster, Abraham Aserin, and Nissim. Garti. 2009. “Solubilization of food bioactives within lyotropic liquid crystalline mesophases.” Current Opinion in Colloid & Interface Science, 14, 1, Pp. 21–32. Abstract
A review. Liq. crystals are widely utilized as model systems to mimic biol. processes where the phase behavior of lipids plays a mediating role. In various foods and pharmaceutical and biotech. applications, the liq. cryst. phases formed by surfactants in an aq. medium represent useful host systems for drugs, amino acids, peptides, proteins and vitamins. Various biol. active food additives are sol. in neither aq. nor oil phase and require environmental protection against hydrolysis or oxidn. Lyotropic liq. crystals meet these requirements mainly due to their high solubilization capacities for hydrophilic, lipophilic and amphiphilic guest mols. Moreover, recent studies demonstrated controlled and/or sustained release of solubilized mols. from different liq. cryst. matrixes. This paper surveys the solubilization of hydrophilic, lipophilic and amphiphilic guest mols. for food applications and illustrates the corresponding structural transformations. Recent developments in liq. crystal characterization methods are discussed. [on SciFinder(R)]
Shoshana Rozner, Inna Popov, Vladimir Uvarov, Abraham Aserin, and Nissim. Garti. 2009. “Templated cocrystallization of cholesterol and phytosterols from microemulsions.” Journal of Crystal Growth, 311, 16, Pp. 4022–4033. Abstract
A major cause of cardiovascular disease is high cholesterol (CH) levels in the blood, a potential soln. to which is the intake of phytosterols (PS) known as CH-reducing agents. One mechanism proposed for PS activity is the mutual cocrystn. of CH and PS from dietary mixed micelles (DMM), a process that removes excess CH from the transporting micelles. In this study, microemulsions (MEs) were used both as a model system for cocrystn. mimicking DMM and as a possible alternative pathway, based on the competitive solubilization of CH and PS, to reduce solubilized CH transport levels from the ME. The effects of different CH/PS ratios, aq. diln., and lecithin-based MEs on sterol crystn. were studied. The pptd. crystals from the ME-loaded system with PS alone and from that loaded with 1:1 or 1:3 CH/PS mixts. were significantly influenced by ME microstructure and by diln. with aq. phase (X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) results). No new polymorphic structures were detected apart from the corresponding sterol hydrates. Mixed crystal morphol. and the habit of the pptd. sterols were strongly affected by the CH/PS ratio and the structures of the dild. ME. As the amt. of PS in the mixt. increased or as the ME aq. diln. proceeded, pptd. crystal shape became more needle-like. The mixed sterols seemed to be forming eutectic solids. [on SciFinder(R)]
Nissim Garti, Idit Amar-Yuli, Dima Libster, and Abraham. Aserin. 2009. “Cubosomes as delivery vehicles.” In Highlights Colloid Sci., Pp. 279–290. New-York: Wiley-VCH Verlag GmbH & Co. KGaA. Abstract
A review on cubosomes, nanosoft particles that are formed when the liq. cryst. cubic phases are dispersed in aq. phase contg. a stabilizer (usually amphiphilic polymer), and their potential use as drug delivery vehicles. In the dispersed soft matter particles, the nanostructure of the original cubic inner structure remains intact despite the dispersion process. The three-dimensional symmetry of the cubic phases, combined with their large interfacial area and balanced content of hydrophobic and hydrophiic domains, make them very promising universal drug carriers, with numerous advantages over most other systems used at present. These exceptional phys. and chem. properties stimulated the study of the liq. crystal dispersions. Thus, one can take advantage of the complex phases for controlled delivery, while simultaneously having the benefit of the low viscosity of a system of soft nanoparticles dispersed in a continuous aq. phase. [on SciFinder(R)]
Rivka Efrat, Ellina Kesselman, Abraham Aserin, Nissim Garti, and Dganit. Danino. 2009. “Solubilization of Hydrophobic Guest Molecules in the Monoolein Discontinuous QL Cubic Mesophase and Its Soft Nanoparticles.” Langmuir, 25, 3, Pp. 1316–1326. Abstract
Hydrophobic bioactive guest mols. were solubilized in the discontinuous cubic mesophase (QL) of monoolein. Their effects on the mesophase structure and thermal behavior, and on the formation of soft nanoparticles upon dispersion of the bulk mesophase were studied. Four additives were analyzed. They were classified into two types based on their presumed location within the lipid bilayer and their influence on the phase behavior and structure. Differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), polarized light microscopy, cryogenic-transmission electron microscopy (cryo-TEM), and dynamic light scattering (DLS) were used for the anal. We found that carbamazepine and cholesterol (type I mols.) likely localize in the hydrophobic domains, but close to the hydrophobic-hydrophilic region. They induce strong perturbation to the mesophase packing by influencing both the order of the lipid acyl chains and interactions between lipid headgroups. This results in significant redn. of the phase transition enthalpy, and phase sepn. into lamellar and cubic mesophases above the max. loading capacity. The inclusion of type I mols. in the mesophase also prevents the formation of soft nanoparticles with long-range internal order upon dispersion. In their presence, only vesicles or sponge-like nanoparticles form. Phytosterols and coenzyme Q10 (type II mols.) present only moderate effects. These mols. reside in the hydrophobic domains, where they cannot alter the lipid curvature or transform the QL mesophase into another phase. Therefore, above max. loading, excess solubilizate ppts. in crystal forms. Moreover, when type II-loaded QL is dispersed, nanoparticles with long-range order and cubic symmetry (i.e., cubosomes) do form. A model for the growth of the ordered nanoparticles was developed from a series of intermediate structures identified by cryo-TEM. It proposes the development of the internal structure by fusion events between bilayer segments. [on SciFinder(R)]
Liron Bitan-Cherbakovsky, Idit Yuli-Amar, Abraham Aserin, and Nissim. Garti. 2009. “Structural Rearrangements and Interaction within HII Mesophase Induced by Cosolubilization of Vitamin E and Ascorbic Acid.” Langmuir, 25, 22, Pp. 13106–13113. Abstract
We investigated the effect of ascorbic acid (AA) cosolubilized with vitamin E (VE) on reverse hexagonal (HII) mesophase. The HII phase comprises monoolein (GMO)/D-$\alpha$-tocopherol (VE) in a ratio of 90/10 by wt. and 12.5 wt% water. The macrostructural characteristics of this system were detd. by polarized light microscopy and small-angle X-ray scattering measurements. We used differential scanning calorimetry and attenuated total reflectance Fourier transform IR to characterize the microstructure, the vibration of the functional groups, and the location of the AA guest mol. AA was incorporated to the system in two steps: 1-4 wt% AA and 5-6 wt% AA. We compared this system to one contg. tricaprylin as the oil phase, as previously reported. These measurements revealed that AA is localized first in the water rich-core and in the interface, and acts as a chaotropic mol. that decreases the water m.p. When a larger quantity of AA (5-6 wt%) is added, the system is satd., and the AA is located in the inner cylinder and manifested by more moderate distortion. The addn. of AA also causes alteration in the behavior of the GMO hydrocarbon chains and makes them more flexible. Further addn. of AA caused the GMO hydrocarbon chain to be more solvated by the VE hydrocarbon chain and enabled addnl. migration of VE; hence a decrease in the hydrophobic melting temp. occurred (similar to tricaprylin). Increasing the amt. of AA weakened the bonding between the GMO and water and created new bonds between AA and GMO and AA with water. [on SciFinder(R)]
R Lutz, A Aserin, L Wicker, and N Garti. 2009. “Structure and physical properties of pectins with block-wise distribution of carboxylic acid groups.” Food Hydrocolloids, 23, 3, Pp. 786–794. Abstract
The physical and the interfacial properties of pectins de-esterified by a specific block-wise enzymatic procedure were investigated. Two major types of block-wise de-esterified pectins with different internal distribution of carboxylic acid on the pectin chains were explored. Type C and type U pectins with the same degree of methylesterification are different and a more block-wise intramolecular distribution in comparison to commercial native apple pectin. The most ordered pectin (U63 pectin, 63% methyl-esterified pectin) has the highest electrophoretic mobility (zeta-potential). It reveals more pronounced intermolecular interactions since it exhibited, at low pH, the lowest circular dichroism intensity at shorter wavelength. U63 pectin (at acidic pH, without calcium addition) has a higher viscosity and formed a stronger gel compared to the less ordered C63 pectin and/or native apple pectin. X-ray patterns show that powdered U63 pectin is more crystalline than C63 pectin, while apple pectin is mostly amorphous. The modified pectin also, most effectively, reduced the surface tension (55 mN/m) and the interfacial tension (5.6 mN/m), probably due to the preferred surface orientation of the carboxylic groups at the water/air or water/oil interfaces. It was demonstrated that the internal charge distribution within the backbone of the pectin is an effective factor in its crystalline organization and its solution properties. It is, therefore, expected that the U63 pectin will exhibit better emulsification capabilities and will form stronger complexes with proteins. (C) 2008 Elsevier Ltd. All rights reserved.
Y Kim, H Lee, J Jung, J Rivner, R Lutz, R Arnold, N Garti, and L Wicker. 2009. “Valencia orange pectinmethylesterases, charge modification of pectins, and applications to food technology and drug delivery.” In Pectins Pectinases, Pp. 231–243. Wageningen Academic Publishers. Abstract
Fractionation of Valencia orange pulp prepns. resulted in PME active fractions contg. putative PMEs of 13, 27, and 36 kDa. NMR anal. indicated that pectin de-esterification by PMEs in these fractions resulted in block wise de-esterification of the substrate. Within the narrow frequency range of 0.57 to 0.76 for the dyad or 0.22-0.55 for the triad, little effect on G' value near 560 Pa is obsd. The relative contribution of total charge or distribution of charge cannot be clearly elucidated as the contribution of either depends on achieving a crit. limit of de-esterification. The position and shape of this crit. limit is influenced by the compn. of the dyads and triads of carboxylic acid groups. Applications of charge modified pectins include the ability to interact with proteins, stabilize emulsions for entrapment of addenda and for drug release. Under low pH, cationic milk proteins interact readily with pectins, esp. charge modified pectins. At pH 3.8, non fat dry milk, caseinates, $\alpha$S1,2, $\beta$- but not $ąppa$-casein pptd., esp. with modified pectin. Modified pectin apparently increased the soly. of sodium caseinate, suggesting a competition between protein-protein and protein-pectin interactions. Further, charge modified pectins reduced the surface tension and interfacial activity of dispersions and reduced the droplet size of emulsions. Finally, modified pectins showed superior entrapment and less release of indomethacin compared to com. low methoxyl pectins. [on SciFinder(R)]
Shoshana Rozner, Abraham Aserin, and Nissim. Garti. 2008. “Competitive solubilization of cholesterol and phytosterols in nonionic microemulsions studied by pulse gradient spin-echo NMR.” Journal of Colloid and Interface Science, 321, 2, Pp. 418–425. Abstract
The actual mechanism of cholesterol redn. by phytosterols is yet to be explored. One hypothesis states that cholesterol and phytosterols compete on the solubilization locus within gastric bile salt micelles. In this study competitive solubilization within microemulsions as vehicles for dietary intake of cholesterol and phytosterols was studied by pulse gradient spin-echo NMR. The loaded microemulsions undergo phase transitions as a function of diln., the type of solubilized sterol, and the wt. ratio of the cosolubilized sterols. Microemulsions contg. 10-20 wt% of aq. phase, show similar diffusivity of the oil and aq. phases in all examd. systems (excluding PS-loaded one) reflecting the minor influence of these solubilizates on the structure of the inner and the outer phases. The closeness of these structures enables the mobility of water mols. between them. Upon further diln. (\textgreater20 wt% aq. phase), significant differences in decrease rate of the oil and increase of the water phases mobilities (occurring upon inversion), were detected within the studied systems. It was concluded that the solubilized sterols influence the structural transitions based on their location within the structures and their competitive solubilization. The phytosterols solubilized mostly in the continuous oil phase and between the surfactant tails. Cholesterol is solubilized in the vicinity of the surfactant headgroups and affects the surface curvature. In mixts. of cholesterol and phytosterols, structural changes are dictated mostly by the presence of the cholesterol. [on SciFinder(R)]
YD Livney. 2008. “Complexes and conjugates of biopolymers for delivery of bioactive ingredients via food.” In Delivery Controlled Release Bioact. Foods Nutraceuticals, Pp. 234–250. Woodhead Publishing Ltd. Abstract
A review discusses the aspects of complexes and conjugates of biopolymers related to the delivery of functional components via foods. The advantages of complexes and conjugates of proteins and polysaccharides used as building blocks for delivery systems are many. [on SciFinder(R)]