W/O Microemulsions as Dendrimer Nanocarriers: An EPR Study.

Citation:

Shifra Rokach, Ottaviani, Maria Francesca , Shames, Alexander I, Nir, Ido , Aserin, Abraham , and Garti, Nissim. . 2012. “W/O Microemulsions As Dendrimer Nanocarriers: An Epr Study.”. Journal Of Physical Chemistry B, 116, 41, Pp. 12633–12640. doi:10.1021/jp307616b.

Abstract:

A complex system, based on a dendrimer solubilized in the aq. core of water-in-oil microemulsion, may combine the advantages of both dendrimers and microemulsions to provide better control of drug release. We report for the first time the use of EPR technique to det. the effect of solubilized dendrimer on the structure of the microemulsion. The solubilized poly(propyleneimine) (PPI-G2) interacts with sodium bis(2-ethylhexyl) sulfosuccinate (AOT). EPR anal. provided information on polarity, microviscosity, and mol. order of the systems. Polarity and microviscosity increased from unloaded water-in-oil microemulsion to the system loaded with 0.2 wt. % PPI-G2, but remained unchanged with higher PPI-G2 loads. The degree of order also increased with 0.2 wt. % PPI-G2 with only minor addnl. increase with larger quantities (25 wt. %) of PPI-G2. Variations in pH only slightly affected the structure of microemulsion in the absence and presence of the loaded dendrimers. Aliph. oils with longer lipophilic chains enhanced the structural order of the microemulsion. On increasing water content, polarity and degree of order increased. PPI-G2 dendrimer in small loads is attracted by the neg. charged AOT and thus intercalates in the interface of the droplets. Yet, at higher PPI-G2 loads, the excess mols. are solubilized in the water core. [on SciFinder(R)]

Last updated on 05/27/2020