Abstract:
Water-dilutable microemulsions were prepd. and loaded with two types of omega-3 fatty acid esters (omega-3 Et esters, OEE; and omega-3 triacylglycerides, OTG), each sep. and together with ubiquinone (CoQ10). The microemulsions showed high and synergistic loading capabilities. The linear fatty acid ester (OEE) solubilization capacity was greater than that of the bulky and robust OTG. The location of the guest mols. within the microemulsions at any diln. point were detd. by elec. cond., viscosity, DSC, SAXS, cryo-TEM, SD-NMR, and DLS. We found that OEE mols. pack well within the surfactant tails to form reverse micelles that gradually, upon water diln., invert into bicontinuous phase and finally into O/W droplets. The CoQ10 increases the stabilization and solubilization of the omega-3 fatty acid esters because it functions as a kosmotropic agent in the micellar system. The hydrophobic and bulky OTG mol. strongly interferes with the tail packing and spaces them significantly - mainly in the low and medium range water dilns. When added to the micellar system, CoQ10 forms some reverse hexagonal mesophases. The inversion into direct micelles is more difficult in comparison to the OEE system and requires addnl. water diln. The OTG with or without CoQ10 destabilizes the structures and decreases the solubilization capacity since it acts as a chaotropic agent to the micellar system and as a kosmotropic agent to hexagonal packing. These results explain the differences in the behavior of these mols. with vehicles that solubilize them in aq. phases. Temp. disorders the bicontinuous structures and reduces the supersatn. of the system contg. OEE with CoQ10; as a result CoQ10 crystn. is retarded. [on SciFinder(R)]