Citation:
Abstract:
The prepn. of org.-inorg. composite coatings with the purpose to increase the bioactivity of bioinert metal implants was investigated. As substrates, glass plates and rough titanium surfaces (Ti-SLA) were employed. The method comprises the deposition of polyelectrolyte multilayers (PEMLs) followed by immersion of the coated substrate into a calcifying soln. of low supersatn. (MCS). Single or mixed PEMLs were constructed from poly-L-lysine (PLL) alternating with poly-L-glutamate, (PGA), poly-L-aspartate (PAA), and/or chondroitin sulfate (CS). ATR-FTIR spectra reveal that (PLL/PGA)10 multilayers and mixed multilayers with a (PLL/PGA)5 base contain intermol. $\beta$-sheet structures, which are absent in pure (PLL/PAA)10 and (PLL/CS)10 assemblies. All PEML coatings had a grainy topog. with aggregate sizes and size distributions increasing in the order: (PLL/PGA)n \textless (PLL/PAA)n \textless (PLL/CS)n. In mixed multilayers with a (PLL/PGA)n base and a (PLL/PAA)n or (PLL/CS)n top, the aggregate sizes were greatly reduced. The PEMLs promoted calcium phosphate nucleation and early crystal growth, the intensity of the effect depending on the compn. of the terminal layer(s) of the polymer. In contrast, crystal morphol. and structure depended on the supersatn., pH, and ionic strength of the MCS, rather than on the compn. of the org. matrix. Crystals grown on both uncoated and coated substrates were mostly platelets of calcium deficient carbonate apatite, with the Ca/P ratio depending on the pptn. conditions. [on SciFinder(R)]