Novel Discrete Micellar Cubic Phase From a Mixture of GMO/Ethanol/Water.

Citation:

Rivka Efrat, Abraham Aserin, Dganit Danino, Ellen J Wachtel, and Nissim. Garti. 2005. “Novel Discrete Micellar Cubic Phase From a Mixture of GMO/Ethanol/Water.” Australian Journal of Chemistry, 58, 11, Pp. 762–766.

Abstract:

During the reconstruction the ternary phase diagram of glycerol monooleate (GMO)/EtOH/H2O, the authors detected a novel structure not previously seen. The new phase, denoted QL (micellar cubic liq.), is located within the 4954 wt.-% H2O/4133 wt.-% GMO binary mixt. line and at 10-13 wt.-% EtOH in a small island within the phase diagram close to the cubic liq.-cryst. phase region. The QL phase is transparent (not tinted), of a low viscosity (36.6 Pa s), non-birefringent, and stable at room temp. Evidence from severe centrifugation, synchrotron small-angle x-ray scattering (SAXS) measurements, and rheol. behavior revealed that the sample is a single phase. SAXS reflections suggest that two types of domain may coexist. The symmetry of the QL phase is Pm3n. A cubic micellar structure is the dominant mesostructure of this unique sample. Cryo-TEM images show highly ordered domains with cubic symmetry, of lattice parameter 103 ± 2 \AA. A possible transformation pathway to the QL phase is a 'rupture and refusion' mechanism, as the phase seems to have discontinuous symmetry. [on SciFinder(R)]
Last updated on 05/27/2020