Citation:
Abstract:
Damages to articular cartilage that are caused by trauma, age-related diseases (arthritis, arthrosis) and/or phys. stress pose major medical problems. A possible soln. is to introduce a biodegradable sponge-like scaffold contg. cartilage-forming cells. In the current work we developed a model for a partially calcified functional biomedical membrane with a gradient of calcium phosphate crystal d. to form the interface between bone and a sponge-like cell contg. scaffold for cartilage regeneration. The membrane consists of a biocompatible, biodegradable, partially calcified hydrogel, in our case gelatin was used. One part is an org.-inorg. nanocomposite consisting of nanocryst. calcium phosphate particles, formed in situ within the hydrogel, while the other part is the hydrogel without inorg. crystals. The exptl. method used was one-dimensional single diffusion. Gelatin gels contg. calcium or phosphate ions, resp., were exposed from the upper side to a soln. of the other constituent ion (i.e. a sodium phosphate soln. was allowed to diffuse into a calcium contg. gel and vice versa). SEM (E-SEM), EDX, XRD and ATR-FTIR spectroscopy confirmed the existence within the gel of a d. gradient of carbonate apatite crystals, with a dense top layer extending several microns into the gel. Ca/P at. ratios were in the range characteristic of calcium deficient apatites. The effect of different exptl. parameters on the calcification process within the gelatin membranes is discussed. [on SciFinder(R)]